Causal Feature Selection for Individual Characteristics Prediction
نویسندگان
چکیده
People can be characterized by their demographic information and personality traits. Characterizing people accurately can help predict their preferences, and aid recommendations and advertising. A growing number of studies infer peoples characteristics from behavioral data. However, context factors make behavioral data noisy, making these data harder to use for predictive analytics. In this paper, we demonstrate how to employ causal identification on feature selection and how to predict individuals’ characteristics based on these selected features. We use visitors’ choice data from a large theme park, combined with personality measurements, to investigate the causal relationship between visitors characteristics and their choices in the park. We demonstrate the benefit of feature selection based on causal identification in a supervised prediction task for individual characteristics. Based on our evaluation, our models that trained with features selected based on causal identification outperformed existing methods.
منابع مشابه
Comprehensive causal analysis of occupational accidents’ severity in the chemical industries; A field study based on feature selection and multiple linear regression techniques
Introduction: The causal analysis of occupational accidents’ severity in the chemical industries may improve safety design programs in these industries. This comprehensive study was implemented to analyze the factors affecting occupational accidents’ severity in the chemical industries. Methods and Materials: An analytical study was conducted in 22 chemical industries during 2016-2017. The stu...
متن کاملCausal & Non-Causal Feature Selection for Ridge Regression
In this paper we investigate the use of causal and non-causal feature selection methods for linear classifiers in situations where the causal relationships between the input and response variables may differ between the training and operational data. The causal feature selection methods investigated include inference of the Markov Blanket and inference of direct causes and of direct effects. Th...
متن کاملNeuro-Fuzzy Based Algorithm for Online Dynamic Voltage Stability Status Prediction Using Wide-Area Phasor Measurements
In this paper, a novel neuro-fuzzy based method combined with a feature selection technique is proposed for online dynamic voltage stability status prediction of power system. This technique uses synchronized phasors measured by phasor measurement units (PMUs) in a wide-area measurement system. In order to minimize the number of neuro-fuzzy inputs, training time and complication of neuro-fuzzy ...
متن کاملFeature Selection for Small Sample Sets with High Dimensional Data Using Heuristic Hybrid Approach
Feature selection can significantly be decisive when analyzing high dimensional data, especially with a small number of samples. Feature extraction methods do not have decent performance in these conditions. With small sample sets and high dimensional data, exploring a large search space and learning from insufficient samples becomes extremely hard. As a result, neural networks and clustering a...
متن کاملA New Hybrid Method for Improving the Performance of Myocardial Infarction Prediction
Abstract Introduction: Myocardial Infarction, also known as heart attack, normally occurs due to such causes as smoking, family history, diabetes, and so on. It is recognized as one of the leading causes of death in the world. Therefore, the present study aimed to evaluate the performance of classification models in order to predict Myocardial Infarction, using a feature selection method tha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1712.07708 شماره
صفحات -
تاریخ انتشار 2017